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Abstract

I use market-clearing identities to derive sufficient statistics formulae for the quan-

tity and value of the average investor’s private information. The inputs required to

operationalize these formulae are closely related to the outputs of the price-dividend

predictability literature. Using estimates from this literature suggests that the average

investor possesses substantial information; but that little of this information is im-

pounded in prices; and that an uninformed investor would experience only a very small

increase in returns if given access to this information.
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1 Introduction

The standard view of financial markets is that they aggregate the dispersed private infor-

mation of participating investors (Grossman 1976). The objective of this paper is simple

to state, and is to give quantitative answers to the following questions: How much private

information do investors have? How much of this information gets impounded into prices?

And how valuable is this information, as measured by its effect on portfolio returns?

In this paper I develop a methodology for answering these questions. The methodology

yields formulae based on a small number of sufficient statistics. These formulae emerge from

a relatively general framework in which investors trade both because of differing expectations

about returns, and because of shocks to desired holdings that resemble discount rate shocks.1

The formulae arise from the exploitation of the market clearing condition, coupled with a

focus on the first two moments of all relevant distributions.

I focus on information about aggregates. In this case, the sufficient statistics that enter

the formulae I derive for the quantity and value of investor information are closely related

to the objects estimated by the literature that studies the predictability of market returns

and dividends using the price-dividend ratio. I operationalize the formulae for the quantity

and value of investor information using the estimates of Binsbergen and Koijen (2010).2

The formulae I derive make clear the relevance of conditioning on the history of prices and

dividends when forming expectations, and a distinguishing feature of Binsbergen and Koijen

(2010) is to present a tractable method of doing exactly this.

The formulae I derive yield the following findings, given inputs from Binsbergen and

Koijen’s empirical analysis. First, the average investor has substantial information: quan-

titively, this information reduces an investor’s perceived variance of future dividends by

approximately 10%. Second, the information possessed by the average investor is large

relative to the information contained in prices: quantitively, information in prices reduces

perceived variance of future dividends by only approximately 1.5%. Third, the value of the

average investor’s information is nonetheless small: an investor who is affected by discount

rate shocks in the same way as the average investor, but who lacks the average investor’s

information about future dividends, would realize a return that is just a handful of basis

points lower than that of the average investor.

The economic underpinning of the formula for the average investor’s information is as

follows. The price-dividend predictability literature has found that high ratios predict low

1See Diamond and Verrecchia (1981) and its subsequent dynamic extensions, e.g., Watanabe (2008), Biais
et al (2010).

2Closely related to these authors’ approach, see the survey of Koijen and Van Nieuwerburgh (2011), and
Cochrane (2011).
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returns. Since subsequent dividends are observed, an econometrician can isolate fluctuations

in the price-dividend ratio due to fluctuations in future dividends that are forecastable by

investors. The only effect of positive innovations to future dividends on the econometrician’s

information is to raise current prices. Hence positive innovations to future dividends reduce

the econometrician’s expectation of future returns. But for market clearing to hold, positive

innovations to future dividends cannot reduce the average investor’s expectation of future

returns. By quantifying this observation, I quantify the amount of information that the

average investor must possess.

Related literature:

This paper is related to the large literature on price-dividend predictability. That lit-

erature adopts the (typically implicit) view that investors are symmetrically informed, and

possess information unobservable to the econometrician. A separate and primarily theo-

retical literature has studied the process by which prices come to contain information, and

emphasizes the idea that investors observe independent and noisy signals of economic funda-

mentals, which are aggregated into the price (classical references are Hayek 1945, Grossman

1976, Hellwig 1980). I link these literatures by showing how estimates from the price-dividend

predictability literature can be used to infer how much information dispersed investors have.

Related, a significant literature quantifies the information content of prices (e.g., Bai,

Savov, Philippon 2015). In this paper I use estimates of the information content of prices to

infer the information possessed by individual investors.

This paper is complementary to Kadan and Manela (2019), who quantify the value to an

investor of a given signal, for example, learning the content of a macroeconomic employment

report before other investors. Instead, in this paper I use observed correlations between

prices and subsequent returns and dividends to infer how much information the average

investor possesses. I also estimate the value of information in a very different way to Kadan

and Manela, specifically, via a second application of market-clearing implications.

This paper is likewise complementary to Egan, MacKay, and Yang (2021), who use a

revealed-preference approach to infer the expectations of investors who buy index funds.

Theirs is a partial equilibrium approach in the sense that it takes fees as given. In contrast,

the approach in this paper depends critically on market-clearing arguments. Relative to

Egan, MacKay, and Yang, this paper has the advantage of shedding light on the information

of the average of all investors in the market; but the disadvantage of saying nothing about

heterogeneity among investors.

The Probability of Informed Trade (PIN; Easley, Kiefer, and O’Hara 1996) quantifies the

fraction of trade stemming from informed traders, and as such measures the extensive margin

of information. In contrast, the measure in this paper captures both intensive and extensive
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margins. The measure in the current paper is also constructed entirely from pricing and

dividend data, and does not require the use of order flow information, and as such is robust

to changes in trading patterns (such as the proliferation of trading venues and the increasing

prevalence of high-frequency traders). Also related, Kyle’s lambda (Kyle 1985) is frequently

estimated, and used as a proxy for the prevalence of informed trade; but it is challenging to

relate the estimated value to a cardinal measure of the amount of informed trade.

The framework used to derive sufficient statistics formulae is related to Watanabe (2008)

and Biais et al (2010). These papers note that uninformed investors will (rationally) experi-

ence below-market returns, because they increase their holdings when future returns are low.

Glode (2011) and Savov (2014) use related observations to rationalize investment in active

mutual funds with negative alphas, along with providing some evidence. The same economic

force operates in this paper. Nonetheless, my estimates suggest that the “underperformance”

of an uninformed investor is quantitively small.

Kurlat (2019) derives and implements a sufficient statistics formula for the ratio of private

to social value of information in what is essentially the origination part of financial markets.

This paper instead examines the amount and private value of information in a secondary

financial market. Bond and García (2021) theoretically characterize the social value of private

information in a related setting.

2 Framework

I derive sufficient statistics formulae using a general framework in which investors trade both

because of differing expectations about returns, and because of shocks to desired holdings

that resemble discount rate shocks. The framework is closely related to the canonical models

of Grossman and Stiglitz (1980), Hellwig (1980), and especially Diamond and Verrecchia

(1981). Following these papers, all random variables below are normal. As such, all results

should be interpreted as approximations based on the first two moments of distributions.

The framework features a single risky asset. In the empirical implementation I will

consider the S&P 500 index. I conjecture that many of the insights of the paper can be

extended to multi-asset models.

A unit continuum of investors, indexed by i, trade a risky asset and a risk-free asset. The

gross return of the risk-free asset is Rt, and the price of the risky asset at date t is Pt. The

risk-free asset is in zero supply, and the supply of the risky asset is normalized to 1. The

risky asset pays dividends Dt at the start of each period t. The (absolute) excess return on
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the risky asset from date t to t + 1 is

Xt+1 ≡ Pt+1 +Dt+1 − RtPt.

Write Ii,t for investor i’s information at date t. Let investor i’s demand qi,t for the asset be

a function of the expected return, E [Xt+1|Ii,t], and factors unrelated to returns, Zt + ui,t:

qi,t = AiE [Xt+1|Ii,t]− Bi (Zt + ui,t) . (1)

In (1), Ai and Bi are potentially equilibrium objects. In particular, in the standard mean-

variance framework, Ai depends on the combination of investor i’s risk tolerance and var [Xt+1|Ii,t],

where the latter is an equilibrium object.

The term Zt is an aggregate shock to investors’ desired asset holdings. As such, Zt shifts

prices independent of expectations of dividends. Following the literature, I will typically

refer to Zt as a discount rate shock. Similarly, ui,t is an investor specific shock to desired

holdings.

Write Ht for the history of exogenous cash flows and aggregate discount rate shocks, i.e.,

Ht = {Dt, Zt−1, Dt−1, Zt−2, Dt−2, . . .}. Define the innovations

ǫD,t = Dt+1 − E [Dt+1|Ht]

ǫZ,t = Zt −E [Zt|Ht] .

Assume ǫD,t and ǫZ,t are stationary, uncorrelated, and normally distributed. As noted, the

normality assumption means that all results should be interpreted as approximations based

on the first two moments of distributions.

The assumption that ǫD,t and ǫZ,t are uncorrelated is important. While the analytical

results below can be generalized to allow for correlation (notes available upon request), these

generalizations are much harder to empirically implement. The assumption that dividend

and discount rate innovations are uncorrelated fits well with how the literature has conceived

of the origins of discount rate fluctuations (e.g., see review in Cochrane 2011). Even in

a consumption-based asset pricing paper such as Bansal and Yaron (2004), discount rate

fluctuations stem largely from fluctuations in cash flow volatility that are assumed to be

uncorrelated with cash flow innovations.

Investor i observes at date t a private signal of date t+ 1 dividends,

yi,t = ǫD,t + ǫi,t,
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where ǫi,t ∼ N
(

0, τ−1
i

)

. In particular, τi is the precision of investor i’s private signal. Note

that the shock Zt + ui,t both directly affects investor i’s asset demand, and also serves as a

signal about Zt.

By standard arguments, in equilibrium the price innovation Pt−E [Pt|Ht] is linear in the

exogenous innovations to dividends and aggregate discount rates,

Pt −E [Pt|Ht] = cDǫD,t + cZǫZ,t.

Investor i’s information Ii,t consists of Ht, combined with prices {Pt, Pt−1, . . .}, private

shocks to asset demand, {Zt + ui,t, Zt−1 + ui,t−1}, and private dividend signals {yi,t, yi,t−1, . . .}.

The inclusion of the lagged realization of the aggregate discount rate, i.e., Zt−1, in Ii,t reflects

the fact that this realization can be inferred from the history of dividend and price realiza-

tions. But an individual investor i does not know the contemporaneous aggregate discount

rate shock; instead, investors know only their own trading preferences, Zt + ui,t.

It is useful to keep track of two further information sets. First, I0,i,t is investor i’s

information excluding the sequence of private signals about dividends yi,t. For investors for

whom private signals are worthless, τi = 0, the information sets I0,i,t and Ii,t coincide. I

refer to an investor with information I0,i,t as being uninformed; though such an investor has

a signal Zt + ui,t about the discount rate innovation ǫZ,t. Second, Jt is the econometrician’s

information set, which consists of Ht augmented with the history of prices {Pt, Pt−1, . . .}.

As written, the only public signals are the realizations of prices and dividends. It is

straightforward to extend the framework to incorporate additional public signals, such as

public macroeconomic announcements. Under such an extension, the required inputs would

be the outputs of predictability regressions that incorporate the same set of public announce-

ments.

3 Conditional distributions

I start by collecting results on the conditional distributions of

(

ǫD,t

ǫZ,t

)

under different

conditioning information. In particular, the moments of

(

ǫD,t

ǫZ,t

)

conditional on Ii,t, I0,i,t,

and Jt have simple linear relations.

An input for the results in this section is the observation that, because Ii,t, I0,i,t, and Jt

all include the date t price Pt, and because the price is determined by the innovations ǫD,t

and ǫZ,t, the variance-covariance matrix of

(

ǫD,t

ǫZ,t

)

conditional on each of these information
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sets is singular. Formally, this follows from (using Jt as an example)

var [ǫZ,t|Jt] =

(

cD
cZ

)2

var [ǫD,t|Jt]

cov [ǫZ,t, ǫD,t|Jt] = −
cD
cZ

var [ǫD,t|Jt] , (2)

implying

var [ǫZ,t|Jt] var [ǫD,t|Jt]− cov [ǫZ,t, ǫD,t|Jt]
2 = 0. (3)

The results in this section follow from this observation, combined with manipulation of

standard updating rules for normally distributed random variables.

Relative to the econometrician’s information set Jt, I0,i,t contains Zt + ui,t. Define

Υ =
var [ǫZ,t|Jt]

var [ǫZ,t|Jt] + var [ui,t]
,

which measures an uninformed investor’s informational advantage relative to the econome-

trician. It ranges from 0 (if var [ui,t] = ∞, no information advantage) to 1 (if var [ui,t] = 0,

maximal information advantage since an uninformed investor knows ǫZ,t and hence can infer

ǫD,t from the price Pt).

Lemma 1

var

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

= (1− τivar [ǫD,t|Ii,t]) var

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

(4)

var

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

= (1−Υ) var

[(

ǫD,t

ǫZ,t

)

|Jt

]

. (5)

A key ingredient for equilibrium relations is how the sensitivity of the conditional expec-

tation of

(

ǫD,t

ǫZ,t

)

to its true value depends on the information set. The relation is most

easily expressed in terms of forecast errors:

Lemma 2

∂

∂ǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= (1− τivar [ǫD,t|Ii,t])
∂

∂ǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

−

(

ǫD,t

ǫZ,t

))

∂

∂ǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= (1− τivar [ǫD,t|Ii,t])
∂

∂ǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

−

(

ǫD,t

ǫZ,t

))
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∂

∂ǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

−

(

ǫD,t

ǫZ,t

))

= (1−Υ)
∂

∂ǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Jt

]

−

(

ǫD,t

ǫZ,t

))

∂

∂ǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

−

(

ǫD,t

ǫZ,t

))

= (1−Υ)
∂

∂ǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|Jt

]

−

(

ǫD,t

ǫZ,t

))

.

Finally, the following is helpful for parameterizing Υ, an uninformed investor’s informa-

tional advantage relative to the econometrician:

Lemma 3

var [ǫD,t|Jt]

var [ǫD,t]
+

var [ǫZ,t|Jt]

var [ǫZ,t]
= 1.

In words: The econometrician’s information set includes the price Pt, which is a function

of dividend innovations ǫD,t and discount rate innovations ǫZ,t. Lemma 3 says that the more

information that the price contains about ǫD,t, the less it contains about ǫZ,t.

The immediate implication of Lemma 3 is that an uninformed investor’s informational

advantage Υ relative to the econometrician is given by

Υ =
1−

var[ǫD,t|Jt]
var[ǫD,t]

1−
var[ǫD,t|Jt]
var[ǫD,t]

+
var[ui,t]

var[ǫZ,t]

. (6)

4 Private information of the average investor

4.1 The average investor

The general framework allows for a great deal of heterogeneity of investors; in particular,

it places no restrictions on the distribution of characteristics (Ai, Bi, τi) over the investor

population.

Nonetheless, the equilibrium price coincides with the equilibrium price in an economy in

which agents are ex ante identical, i.e., share a common
(

Ā, B̄, τ̄
)

. This representative-agent

characterization of the economy is simply a modest generalization of various results in the

existing literature.

The market-clearing condition is

ˆ

i

qi,tdi = 1,
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which implies

ˆ

i

∂qi,t
∂ǫD,t

di = 0 (7)

ˆ

i

∂qi,t
∂ǫZ,t

di = 0. (8)

A trivial decomposition of
∂qi,t
∂ǫD,t

and
∂qi,t
∂ǫZ,t

is

∂qi,t
∂ǫD,t

= Ai

∂Xt+1

∂ǫD,t

−Ai

∂

∂ǫD,t

(Xt+1 − E [Xt+1|Ii,t])

∂qi,t
∂ǫZ,t

=

(

Ai

∂Xt+1

∂ǫZ,t
−Bi

)

− Ai

∂

∂ǫZ,t
(Xt+1 −E [Xt+1|Ii,t]) .

Here, the first term in each expression is the change in asset demand of investor who perfectly

forecasts the return Xt+1, and the second term represents the underreaction stemming from

imperfect information.

Combined with Lemma 2, and using the fact that the information sets Ii,t and I0,i,t both

contain the contemporaneous price Pt, these decompositions yield

∂qi,t
∂ǫD,t

= Ai

∂Xt+1

∂ǫD,t

− Ai (1− τivar [ǫD,t|Ii,t])
∂

∂ǫD,t

(Xt+1 − E [Xt+1|I0,i,t]) (9)

∂qi,t
∂ǫZ,t

=

(

Ai

∂Xt+1

∂ǫZ,t
−Bi

)

− Ai (1− τivar [ǫD,t|Ii,t])
∂

∂ǫZ,t
(Xt+1 −E [Xt+1|I0,i,t]) .(10)

Substituting into the market-clearing conditions (7) and (8) delivers the following repre-

sentative agent result. Here, the notation var [·|Ii,t (τ̄ )] means the conditional variance as

perceived by an investor who observes private signals of precision τ̄ .

Lemma 4 The equilibrium price coefficients cD and cZ coincide with those in an economy

in which all investors are ex ante identical, i.e., (Ai, Bi, τi) =
(

Ā, B̄, τ̄
)

for all i, where

τ̄ var [ǫD,t|Ii,t (τ̄)] =

´

Aiτivar [ǫD,t|Ii,t]
´

Ai

B̄

Ā
=

´

Bi
´

Ai

.

I will refer to the τ̄ defined by Lemma 4 as the precision of the average investor’s private

information. As the lemma establishes, it is determined as a weighted average of the cross-

section of signal precisions, where the weights are the coefficients Ai that determine the
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sensitivity of investor i’s trade to expectations about the excess return. For use throughout,

define

T ≡ τ̄ var [ǫD,t|Ii,t (τ̄ )] ,

which measures the information advantage of the average investor relative to an uninformed

investor (see Lemma 1, or (12) below). Observe that T ranges from 0, corresponding to no

information advantage, to 1, corresponding to τ̄ = ∞, i.e., the average investor perfectly

observes the dividend innovation ǫD,t.

4.2 Measuring the information of the average investor

The main observation of this section is that the precision of the average investor’s private

information can be expressed in terms of sufficient statistics that can be estimated using

only aggregate data.

The key step is the application of market-clearing. Condition (7) for the average investor

is

Ā
∂Xt+1

∂ǫD,t

− Ā (1− T )
∂

∂ǫD,t

(Xt+1 −E [Xt+1|I0,i,t]) = 0, (11)

which rewrites to

1− T =

∂Xt+1

∂ǫD,t

∂
∂ǫD,t

(Xt+1 − E [Xt+1|I0,i,t])
.

By Lemma 2, and using the fact that the information sets I0,i,t and Jt both contain the

contemporaneous price Pt,

∂

∂ǫD,t

(Xt+1 − E [Xt+1|I0,i,t]) = (1−Υ)
∂

∂ǫD,t

(Xt+1 −E [Xt+1|Jt]) ,

implying

(1− T ) (1−Υ) =

∂Xt+1

∂ǫD,t

∂
∂ǫD,t

(Xt+1 − E [Xt+1|Jt])
.

By construction, the dividend innovation ǫD,t affects the econometrician’s information set Jt

only via the price Pt. Hence:

Proposition 1 The average investor’s informational advantage is given by

(1− T ) (1−Υ) =

∂Xt+1

∂ǫD,t

∂Xt+1

∂ǫD,t
− ∂E[Xt+1|Jt]

∂Pt

∂Pt

∂ǫD,t

.

Proposition 1 says that the average investor’s informational advantage, as given by the
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combination of T (the precision of the average investor’s signal about dividend innovations)

and Υ (the informational advantage of investors, who observe their own discount rate shocks

Zt + ui,t, relative to the econometrician) can be inferred from the objects ∂Pt

∂ǫD,t
, ∂E[Xt+1|Jt]

∂Pt
,

and ∂Xt+1

∂ǫD,t
.

In words, ∂Pt

∂ǫD,t
is the relation between today’s price and the innovations to next period’s

dividend. It is related to ability of prices to forecast future dividends. Likewise, ∂E[Xt+1|Jt]
∂Pt

is related to the ability of today’s price to forecast next period’s return. Finally, ∂Xt+1

∂ǫD,t
is

a combination of ∂Pt

∂ǫD,t
, the direct effect of the dividend innovation ǫD,t on Dt+1, which is

simply 1, and the effect of the dividend innovation ǫD,t on Pt+1, which is determined largely

by the persistence of dividend innovations.

Section 5 details how to relate these objects to the outputs of a typical predictability

analysis.

The economic idea behind Proposition 1 is as follows. Suppose that higher prices today

lead an econometrician to forecast lower returns, as the price-dividend ratio literature sug-

gests. But by definition, the average investor’s holding doesn’t change, since the average

investor must continue to hold the market supply. For this to happen, it must be the case

that the average investor’s expectation differs from the econometrician’s. In particular, the

average investor must observe private signals that are on average positive when prices are

high. Proposition 1 quantifies this statement.

To interpret Proposition 1: From Lemma 1,

1− T =
var [ǫD,t|Ii,t(τ̄)]

var [ǫD,t|I0,i,t(τ̄ )]
, (12)

1−Υ =
var [ǫD,t|I0,i,t(τ̄ )]

var [ǫD,t|Jt]
, (13)

i.e., the percentage reductions in the conditional variance of ǫD,t associated with observing a

signal with the precision of the average investor’s signal, and associated with an uninformed

investor’s informational advantage relative to the econometrician.

4.3 Information in the price relative to the average investor’s in-

formation

The information of the average investor is given by Proposition 1. How does this quantity

of information compare to the information in the price?

The average investor forecasts dividends using the combination of his/her private signal;

his/her private information about the discount rate; and the date t price. Together, these
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three pieces of information affected an investor’s perceived variance of dividends according

to
var [ǫD,t|Ii,t(τ̄)]

var [ǫD,t|Dt,Jt−1]
=

var [ǫD,t|Ii,t(τ̄ )]

var [ǫD,t|I0,i,t(τ̄)]

var [ǫD,t|I0,i,t(τ̄)]

var [ǫD,t|Jt]

var [ǫD,t|Jt]

var [ǫD,t|Dt,Jt−1]
. (14)

The combination of the first two terms in this decomposition is given by Proposition 1. The

final term,
var[ǫD,t|Jt]

var[ǫD,t|Dt,Jt−1]
, measures the information in the price, and can be estimated.

4.4 The value of private information

What is the value of the average investor’s private information? I calculate by how much

giving an uninformed investor access to the average investor’s information would increase the

uninformed investor’s expected return. Observe that this exercise is well-defined regardless

of whether or not uninformed investors are actually present in the market.

The benefit of focusing on return differentials rather than, for example, willingness-to-

pay measures of utility differences, is that it is possible to give a sufficient statistics formula

for the return differential. In contrast, I have been unable to find a sufficient statistics

formula for willingness-to-pay in which the components can be estimated. In particular, a

utility-based measure would require estimates of investor risk aversion.

To isolate the value of information, I evaluate this expected return differential for an

investor who resembles the average in other dimensions. Concretely, I consider an investor

with characteristics
(

Ā, B̄
)

=

(
ˆ

i

Aidi,

ˆ

i

Bidi

)

, (15)

and compare the expected return from investment strategies made under the information of

the average investor,

qτ̄ ,t ≡ ĀE [Xt+1|Ii,t (τ̄ )]− B̄ (Zt + ui,t) ,

and under the information of the uninformed investor,

q0,t ≡ ĀE [Xt+1|I0,i,t]− B̄ (Zt + ui,t) .

Getting access to the average investor’s information would raise an uninformed investor’s

expected return by a fraction

V ≡
E [qτ̄ ,tXt+1]

E [q0,tXt+1]
. (16)

As a first step in evaluating V , note that an investor with characteristics
(

Ā, B̄, τ̄
)

is a

representative agent for the economy, in the sense of Lemma 4. So as a direct consequence

of Lemma 4, the investment strategy of such an investor is independent of the aggregate
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shocks ǫD,t and ǫZ,t. This is a version of the “average investor theorem” of Sharpe (1991).

Corollary 1
∂qτ̄ ,t
∂ǫD,t

= ∂qτ̄ ,t
∂ǫZ,t

= 0.

Corollary 1 and some straightforward manipulation and substitution (see proof of Propo-

sition 2) yields

V =
1

1 +
cov[

q0,t

Ā
,Xt+1]

E[Xt+1]
2

. (17)

Expression (17) relates the value of information to the covariance between an uninformed in-

vestor’s asset position, and returns. Decomposing this covariance into the parts attributable

to dividend and discount rate innovations gives

cov
[q0,t
Ā

, Xt+1

]

=

1
Ā

∂q0,t
∂ǫD,t

∂Xt+1

∂ǫD,t

(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t] +

1
Ā

∂q0,t
∂ǫZ,t

∂Xt+1

∂ǫZ,t

(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] . (18)

The key challenge in evaluating (18) is that while
(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] can be estimated—

loosely speaking, as a residual, i.e., the variance of date t expected excess returns that isn’t

attributable to cash flow innovations—this leaves the term
1

Ā

∂q0,t
∂ǫZ,t

∂Xt+1

∂ǫZ,t

. In particular, this term

depends on the ratio B̄/Ā, which is unobservable.

The key step in characterizing the value of information is to use the market-clearing

condition (8) to infer
1

Ā

∂q0,t
∂ǫZ,t

∂Xt+1

∂ǫZ,t

. Doing so yields a sufficient statistics expression for the value

of information V :

Proposition 2 The value of information V is given by (17), where

cov
[q0,t
Ā

, Xt+1

]

= −
T

1 − T

(

1−

∂Xt+1

∂ǫZ,t

∂Pt

∂ǫZ,t

∂Pt

∂ǫD,t

∂Xt+1

∂ǫD,t

)

(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t] , (19)

and

∂Xt+1

∂ǫZ,t

∂Pt

∂ǫZ,t

= ±

√

√

√

√

√

√

(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t]
(

∂Pt+1

∂ǫZ,t

)2

var [ǫZ,t]
. (20)

The covariance term (19) can be estimated. The first can be bounded using Proposition

1’s expression for the average investor’s information (1− T ) (1−Υ). The final term is the

variance of returns attributable to shocks to date t + 1 dividends. The ratio
∂Pt

∂ǫD,t
∂Xt+1

∂ǫD,t

can be

12



straightforwardly estimated in the data. Finally, the ratio

∂Xt+1

∂ǫZ,t
∂Pt
∂ǫZ,t

can estimated using (20),

i.e., from the ratio of the variances, each of which can be measured as a residual.

Note that estimating the ratio

∂Xt+1

∂ǫZ,t
∂Pt
∂ǫZ,t

via (20) fails to determine the sign of this ratio. In

the numerical implementation, I compute (19) for both possibilities.

The estimated value of the covariance (19) is negative, meaning that uninformed investors

end up negatively timing the market, in the sense of increasing their asset holdings when

future returns are low. To see why negative covariance arises, consider a date t shock to

either discount rates or dividends that increases the return from date t to t+1. In response

to this shock, an uninformed investor’s expectations about returns rises less than informed

investor’s (see Lemma 2). By market clearing, the average investor’s desired asset holding

cannot respond (Corollary 1). It follows that an uninformed investor’s asset holding must

fall.

As noted, the negative covariance between uninformed asset holdings and subsequent

returns is closely related to results in Watanabe (2008) and Biais et al (2010). It occurs

even though the uninformed investor is fully Bayesian in forming expectations about future

returns.

As a final comment on Proposition 1: Recall that the value of information V is based on

an uninformed investor who responds to return expectations and discount rate shocks Zt+uit

in the same way as the average investor in the economy, i.e., has characteristics Ā and B̄ given

by (15). However, in many underpinnings of asset demand (1), the coefficient Ai on return

expectations is a joint function of the endogenous perceived return variance, var [Xt+1|Ii,t],

and exogenous risk aversion. Moreover, the same is potentially true of the coefficient Bi

on discount rate shocks. As such, the measure V doesn’t account for the increase in the

average size of an uninformed investor’s average position that may accompany getting access

to better information and thereby reducing perceived return variance.

Two points are worth making here. First, incorporating this effect into the measure V

would require substantially stronger assumptions about investors’ asset demands than I have

made so far. That is: How exactly does an investor’s asset demand depend on perceived

return variance? Second: Although estimates of the reduction in the perceived variance

of dividend innovations ǫD,t turn out to be relatively large (Section 6), estimates of the

reduction in the perceived variance of returns Xt+1 are much smaller, because estimates

indicate that most return variance is driven by date t + 1 discount rate shocks (Section 5).

As such, incorporating the reduction-in-perceived-variance effect into V is likely to have a

relatively modest impact.
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5 Predictability empirics

The key quantities required to operationalize Propositions 1 and 2 are tightly related to

the outputs of empirical analysis that studies the predictability of returns and dividends,

emphasizing the role of the price-dividend ratio.

The literature is sizeable. In this paper, I use of the estimates of Binsbergen and Koijen

(2010), henceforth BK, to illustrate the methodology developed in Section 4. As the preced-

ing analysis indicates, the interpretation of today’s prices requires incorporating the history

of prices and dividends in order to infer the history of discount rate shocks. An important

advantage of BK’s estimates for the evaluation of the amount and value of private informa-

tion is that, as they write, “Our latent variables approach aggregates the whole history of

price-dividend ratios and dividend growth rates to estimate expected returns and expected

growth rates.”

5.1 Estimated VAR

BK estimate an empirical model with exogenous shocks to dividend growth, expected return,

and realized dividends. As emphasized by BK and Cochrane (2008), such an empirical model

is indistinguishable from an alternative one with exogenous shocks to dividend growth and

the price-dividend ratio. I will work with this latter specification because it is stated in terms

of observables, and as such is closer to quantities needed as inputs for Propositions 1 and 2.

Specifically, write rt+1 = log Pt+1+Dt+1

Pt
and ∆dt+1 = log Dt+1

Dt
for the asset return and

dividend growth rate between dates t and t + 1. Let µt and gt denote the econometrician’s

date t expectations about returns and dividend growth:

µt = E [rt+1|Jt]

gt = E [∆dt+1|Jt] .

BK assume that µt and gt follow AR1 processes:

µt+1 = µ̄+ φµ (µt − µ̄) + νµ,t+1

gt+1 = ∆̄d+ φg

(

gt − ∆̄d
)

+ νg,t+1.

Writing pdt = log Pt

Dt
for the log price-dividend ratio, along with p̄d for its steady state value,

and ρ =
exp(p̄d)

1+exp(p̄d)
, the now-standard present value approximation (Campbell and Shiller
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1988; for completeness, see Appendix D) is

pdt − p̄d =
gt − ∆̄d

1− ρφg

−
µt − µ̄

1− ρφµ

.

Let νd,t+1 and νpd,t+1 denote the unforecastable (to the econometrician) innovations to ∆dt+1

and pdt+1, i.e.,

∆dt+1 = gt + νd,t+1

pdt+1 = E [pdt+1|Jt] + νpd,t+1.

Since

pdt+1 − p̄d =
φg

(

gt − ∆̄d
)

1− ρφg

−
φµ (µt − µ̄)

1− ρφµ

+
νg,t+1

1− ρφg

−
νµ,t+1

1− ρφµ

=
φg − φµ

1− ρφg

(

gt − ∆̄d
)

+ φµ

(

pdt − p̄d
)

+
νg,t+1

1− ρφg

−
νµ,t+1

1− ρφµ

,

it follows that

νpd,t+1 =
νg,t+1

1− ρφg

−
νµ,t+1

1− ρφµ

. (21)

Since the econometrician observes only dividends and prices, the innovations νg,t+1 and νµ,t+1

must be functions of νpd,t+1 and νd,t+1:
3

νg,t+1 = apdνpd,t+1 + adνd,t+1

νµ,t+1 = bpdνpd,t+1 + bdνd,t+1.

From (21), bpd and bd satisfy

apd
1− ρφg

−
bpd

1− ρφµ

= 1

ad
1− ρφg

−
bd

1− ρφµ

= 0.

So the estimated system is

gt+1 − ∆̄d = φg

(

gt − ∆̄d
)

+ apdνpd,t+1 + adνd,t+1 (22)

3Linearity here follows from Cochrane (2008, p. 11). Roughly: {νg, νµ, νd} is assumed to be stationary.
Hence {νpd, νd} is stationary; and νg and νµ must be linear functions of νpd, νd.
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∆dt+1 = gt + νd,t+1 (23)

pdt+1 − p̄d =
φg − φµ

1− ρφg

(

gt − ∆̄d
)

+ φµ

(

pdt − p̄d
)

+ νpd,t+1. (24)

The system has ten parameters,

{

∆̄d, p̄d, ρ, φg, φµ, apd, ad, σ
2
pd, σ

2
d, σpd,d

}

.

Appendix B details how to recover estimates of these ten values from the estimates reported

in BK. The first five parameters
{

∆̄d, p̄d, ρ, φg, φµ

}

coincide with the BK values. Using the

estimates reported in the first column of BK’s Table II yields the values reported in Table 1.

Parameter Estimated value

∆̄d 0.062
p̄d 3.571
ρ 0.969
φg 0.354
φµ 0.932
apd 0.0482
ad 0.3952
σpd 0.1596
σd 0.0576
σpd,d

σpdσd
−0.3118

µ̄ 0.090
bpd −0.0898

R2 of ∆dt+1 regressed on Jt 13.9%

Table 1: Parameter estimates recovered by BK

5.2 From predictability estimates to required inputs

The evaluation of Propositions 1 and 2 requires the estimates of the quantities listed in

Table 2, which also summarizes the corresponding economic quantities. Recall that ǫD,t is

the innovation to date t+ 1 dividends, though investors observe noisy signals at date t.

In particular, ∂E[Xt+1|Jt]
∂Pt

is closely related to the estimated parameter bpd, i.e., the relation

between the expected return (νµ,t) and the price-dividend ratio (νpd,t), holding dividends fixed

(νd,t = 0). Similarly, ∂Pt

∂ǫD,t
is closely related to apd, i.e., the relation between expectations

about the dividend growth rate (νg,t) and today’s price (νpd,t), holding current dividends

fixed (νd,t = 0).
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Term Description Estimated value
(see below)

∂E[Xt+1|Jt]
∂Pt

Expected return
and price

−0.0463

∂Pt

∂ǫD,t
Price and
next-period
dividend

10.961

∂Xt+1

∂ǫD,t
Realized return
and contempora-
neous
dividend

4.5182

(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t] Variance of
returns due to
ǫD,t

P 2
t−1 × 0.01202

(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] Variance of
returns due to
ǫZ,t

P 2
t−1 × 0.01192

(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t] Variance of price
due to ǫZ,t

P 2
t−1 × 0.162

E [Xt+1] Equity premium Pt−1 × 0.0789

Table 2: Quantities to estimate

BK’s estimates are based on nominal annual returns and nominal annual dividend growth

rates. Accordingly, the appropriate risk free rate Rt is a nominal annual rate. I use a risk

free rate of 2% in the calculations below.

5.3 The term ∂E[Xt+1|Jt]
∂Pt

The estimated coefficient is

bpd =
∂E
[

ln
(

Pt+1+Dt+1

Pt

)

|Jt

]

∂ lnPt

= −0.0898.

In words: a 100% increase in prices is associated with a decline in the econometrician’s

expected return of 9pp (percentage points).
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Manipulation yields (both here and below see appendix for details)

∂

∂Pt

E [Xt+1|Jt] ≈
E
[

Xt+1

Pt
|Jt

]

+R

1 +
var

[

Xt+1

Pt
|Jt

]

(

E
[

Xt+1

Pt
|Jt

]

+R
)2

(1 + bpd)− R. (25)

To evaluate (25), replace E
[

Xt+1

Pt
|Jt

]

and var
[

Xt+1

Pt
|Jt

]

with their steady state values. To

do so, note that the steady state value of E
[

Xt+1

Pt
|Jt

]

+R is approximately the steady state

(gross) expected return, i.e., 1 + µ̄. The steady state value of var
[

Xt+1

Pt
|Jt

]

is simply the

square of return volatility, i.e., approx 0.152.

Hence
∂

∂Pt

E [Xt+1|Jt] ≈
1.09

1 +
(

0.15
1.09

)2 (1− 0.0898)− R = −0.0463. (26)

That is: an increase in today’s price of $1 reduces the ($) expected return by approximately

$0.05.

5.4 The term ∂Pt

∂ǫD,t

The estimated coefficient is

apd =
∂E [lnDt+1|Jt]

∂ lnPt

= 0.0482.

In words: a 100% increase in prices is associated with an increase in the econometrician’s

expected dividend growth rate of 5pp.

I first relate apd to ∂pdt
∂∆dt+1

∣

∣

∣

∆dt,Jt−1

, and then subsequently relate ∂pdt
∂∆dt+1

∣

∣

∣

∆dt,Jt−1

to the

desired term ∂Pt

∂ǫD,t
. The first step corresponds to switching from “does today’s price predict

future dividends” to “do future dividends predict today’s price”? The second step is a simply

a shift from percentage changes to level changes. The first step is related to Dávila and

Parlatore (2021), who argue that the residual variance of current prices after controlling for

future dividends is the correct measure of price informativeness, as opposed to the more

commonly measured residual variance of future dividends after controlling for the current

price.

For the first step:

∂pdt
∂∆dt+1

∣

∣

∣

∣

∆dt,Jt−1

=
cov [pdt,∆dt+1|∆dt,Jt−1]

var [∆dt+1|∆dt,Jt−1]
.
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Evaluating,

cov [pdt,∆dt+1|∆dt,Jt−1] = cov [pdt, gt|∆dt,Jt−1]

= cov [νpd,t, apdνpd,t|νd,t]

= apdvar [νpd,t|νd,t] (27)

and

var [∆dt+1|∆dt,Jt−1] = var [νd,t+1] + var [gt|∆dt,Jt−1]

= var [νd,t+1] + var [apdνpd,t|νd,t]

= var [νd,t+1] + a2pdvar [νpd,t|νd,t] , (28)

and hence
∂pdt

∂∆dt+1

∣

∣

∣

∣

∆dt,Jt−1

=
1

apd

a2pdvar [νpd,t|νd,t]

var [νd,t+1] + a2pdvar [νpd,t|νd,t]
. (29)

The second term in (29) is the fraction of the residual variance of ∆dt+1 after controlling for

∆dt and Jt−1 that is explained by further controlling for pdt. If this ratio is 1, i.e., pdt and

∆dt+1 are perfectly correlated conditional on ∆dt and Jt−1, then ∂pdt
∂∆dt+1

∣

∣

∣

∆dt,Jt−1

is simply

the reciprocal of apd.

Evaluating

var [νpd,t|νd,t] = var [νpd,t]−

(

cov [νpd,t, νd,t]

var [νd,t]

)2

var [νd,t]

= var [νpd,t]
(

1− corr [νpd,t, νd,t]
2) = 0.0230 (30)

and so
a2pdvar [νpd,t|νd,t]

var [νd,t+1] + a2pdvar [νpd,t|νd,t]
= 0.0158. (31)

The low value of this last term reflects the standard result that today’s price contains very

limited predictive power for tomorrow’s dividend. Returning to (29),

∂pdt
∂∆dt+1

∣

∣

∣

∣

∆dt,Jt−1

=
0.0158

0.0482
= 0.328,

i.e., a 100% increase in date t+ 1 dividends suggests that date t prices were 33% higher.
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For the second step, along with numerical implementation:

∂Pt

∂ǫD,t

≈
exp

(

p̄d
)

exp (ḡ)
(1− cov [pdt,∆dt+1])

∂pdt
∂∆dt+1

∣

∣

∣

∣

∆dt,Jt−1

(32)

= e3.571−0.062 × 1.0001× 0.328 = 10.961. (33)

5.5 The term ∂Xt+1

∂ǫD,t

A first step is to decompose the effect of the date t + 1 dividend innovation on the excess

return Xt+1 into its anticipated and unanticipated components:

∂Xt+1

∂ǫD,t

=
∂E [ǫD,t|Jt]

∂ǫD,t

∂Xt+1

∂E [ǫD,t|Jt]
+

∂ (ǫD,t − E [ǫD,t|Jt])

∂ǫD,t

∂Xt+1

∂ (ǫD,t −E [ǫD,t|Jt])

=
∂E [ǫD,t|Jt]

∂ǫD,t

∂E [Xt+1|Jt]

∂E [ǫD,t|Jt]
+

∂ (ǫD,t − E [ǫD,t|Jt])

∂ǫD,t

∂ (Pt+1 +Dt+1)

∂ (ǫD,t − E [ǫD,t|Jt])

=
∂Pt

∂ǫD,t

∂E [Xt+1|Jt]

∂Pt

+
∂ (ǫD,t −E [ǫD,t|Jt])

∂ǫD,t

∂ (Pt+1 +Dt+1)

∂Dt+1

∣

∣

∣

∣

Jt

, (34)

where the second inequality follows from the fact that the innovation ǫD,t affects the econo-

metrician’s date t expectation only via the price Pt.

Both elements of the first term of (34), corresponding to effect of the anticipated com-

ponent of ǫD,t, are calculated above.

In the second term, corresponding to the effect of the unanticipated component,
∂(ǫD,t−E[ǫD,t|Jt])

∂ǫD,t

is 1− R2 (∆dt+1 on Jt). This is reported in BK. Finally,

∂ (Pt+1 +Dt+1)

∂Dt+1

∣

∣

∣

∣

Jt

≈ 1 + ep̄d
(

cov [νpd,t+1, νd,t+1]

var [νd,t+1]
+ 1

)

(35)

= 1 + e3.571
(

−0.3118×
0.1596

0.0576
+ 1

)

= 5.8370. (36)

So from (34) (and making use of (26) and (33))

∂Xt+1

∂ǫD,t

≈ 10.961× (−0.0463) + (1− 0.139)× 5.8370 = 4.5182.

Perhaps as one would expect, most of the effect of the dividend’s innovation ǫD,t stems from

the unanticipated component. In turn, the unanticipated component both directly increases

the date t+ 1 dividend Dt+1, and also increases the date t + 1 price Pt+1.
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5.6 The term
(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t]

I make use of the decomposition (34). By the law of total variance,4

var

[

∂Pt

∂ǫD,t

ǫD,t

]

≈ var [Pt|Dt,Jt−1]− var [Pt|Dt+1, Dt,Jt−1] . (37)

That is, the variance of Pt given Dt,Jt−1 stems from ǫD,t and ǫZ,t. The term var [Pt|Dt+1, Dt,Jt]

isolates the effect stemming from ǫZ,t. Evaluating,

var

[

∂Pt

∂ǫD,t

ǫD,t

]

≈ P 2
t−1e

2∆̄d
a2pdvar [vpd,t|νd,t]

2

var [νd,t+1] + a2pdvar [vpd,t|νd,t]
. (38)

Next, note that

var

[

∂ (ǫD,t −E [ǫD,t|Jt])

∂ǫD,t

ǫD,t

]

= var [ǫD,t|Jt] ,

i.e., simply the variance of the component of ǫD,t that is unanticipated by the econometrician

given date t information. Evaluating,

var [ǫD,t|Jt] = D2
t var

[

e∆dt+1|Jt

]

≈ P 2
t−1e

2∆dt−2pdt−1

(

e∆̄d
)2

var [νd,t+1] .

Putting everything together,

(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t] ≈ P 2
t−1e

2∆̄d

× (

(

∂E [Xt+1|Jt]

∂Pt

)2 a2pdvar [vpd,t|νd,t]
2

var [νd,t+1] + a2pdvar [vpd,t|νd,t]

+

(

∂ (Pt+1 +Dt+1)

∂Dt+1

∣

∣

∣

∣

Jt

)2

e2(∆̄d−p̄d)var [νd,t+1]).

The two terms on the RHS correspond to return variation stemming from anticipated and

unanticipated dividend innovations.

From (26), (30), (31),

e2∆̄d

(

∂E [Xt+1|Jt]

∂Pt

)2 a2pdvar [vpd,t|νd,t]
2

var [νd,t+1] + a2pdvar [vpd,t|νd,t]
= e2×.062×.04632×.0230×.0158 = 8.82×10−7.

4Equation (37) holds exactly under joint normality.

21



From (36),

e2∆̄d

(

∂ (Pt+1 +Dt+1)

∂Dt+1

∣

∣

∣

∣

Jt

)2

e2∆̄d−2p̄dvar [νd,t+1] = e2×.062×5.83702×e2×(.062−3.571)×0.05762 = 1.45×10−4.

Anticipated date t+1 dividend innovations contribute a negligible amount of return variance

relative to unanticipated date t+ 1 dividend innovations.

Hence
(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t] ≈ P 2
t−1 × 1.45× 10−4 = P 2

t−1 × 0.01202.

5.7 The term
(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t]

Note that
(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] = var [E [Xt+1|Dt+1,Jt] |Dt+1, Dt,Jt−1] .

Evaluating,

(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] ≈ P 2
t−1e

2∆̄d

(

e∆̄d

(

φg − φµ

1− ρφg

apd + φµ

)

− R

)2

var
[

νpd
t |νd

t

]

. (39)

From (30),

(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] ≈ P 2
t−1e

2×.062 ×

(

e.062
(

.354− .932

1− .969× .354
× .0482 + .932

)

− 1.02

)2

× 0.0230

= P 2
t−1 × 1.41× 10−4 = P 2

t−1 × .01192.

Date t discount rate innovations make approximately the same contribution to the variance

of the return Xt+1 as do unanticipated date t + 1 dividend shocks.

Remark (Aside): Combining the variance to returns Xt+1 stemming from dividend shocks

ǫD,t and discount rate shocks ǫZ,t gives

(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t] +

(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t] ≈ P 2
t−1 × 2.86× 10−4 = P 2

t−1 × .01692. (40)

Expressed in percentage terms, date t + 1 innovations and date t discount rate innova-

tions generate a standard deviation of returns of approximately 1.7%. Why is the this

value so much lower than the total standard deviation of returns, which is on the or-

der of 15% − 20%? The reason is that (40) omits the return variation stemming from

date t + 1 discount rate innovations, i.e.,
(

∂Xt+1

∂ǫZ,t+1

)2

var [ǫZ,t+1]. Using the decomposition
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Pt+1 = Pt−1e
∆dt+1+∆dt−pdt−1epdt+1,

(

∂Xt+1

∂ǫZ,t+1

)2

var [ǫZ,t+1] ≈ P 2
t−1e

4∆̄dvar
[

νpd
t+1|ν

d
t+1

]

= P 2
t−1 × 0.17172.

In other words, most of the variation in returns from date t to t + 1 stems from date t + 1

discount rate innovations; and the estimated value of this variation is consistent with total

return variation lying in the 15− 20% range.

In contrast: Because discount rates are highly persistent (the estimated value of the

autoregression coefficient φµ is 0.93), date t innovations affect prices at both dates t and

t+ 1, with modest effects on the return from date t to t + 1.

5.8 The term
(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t]

By the law of total variance,

(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t] = D2
t var

[

epdt |∆dt+1,∆dt,Jt−1

]

≈ D2
t var

[

epdt |∆dt,Jt−1

]

− D2
t var

[

E
[

epdt |∆dt+1,∆dt,Jt−1

]

|∆dt,Jt−1

]

.

Evaluating, making use of (28) and (29), and then (30) in the numerical evaluation:

(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t] ≈ P 2
t−1e

2∆̄d var [νd,t+1] var [νpd,t|νd,t]

var [νd,t+1] + a2pdvar [νpd,t|νd,t]
. (41)

= P 2
t−1e

2×0.062 .05762 × .0230

.05762 + .04822 × .0230
= P 2

t−1 × .0256 = P 2
t−1 × .162.

5.9 The term E [Xt+1]

Finally, I consider the term E [Xt+1]. This is simply the equity premium,. While many

estimates are available, for consistency I use one based on the same BK estimates as the

other terms:

E [Xt+1] ≈ Pt−1e
∆̄d (eµ̄ −R) (42)

= Pt−1e
.062
(

e.090 − 1.02
)

= Pt−1 × 0.0789. (43)
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6 The quantity and value of the average investor’s private

information

Finally, I use the estimated values to operationalize Propositions 1 and 2, along with the

decomposition (14).

6.1 The average investor’s information

The average investor’s information is, by Proposition 1,

(1− T ) (1−Υ) ≈
4.5182

4.5182− (−.0463× 10.961)
= 0.899. (44)

That is: The average investor’s information reduces the conditional variance of the dividend

forecast by just over 10%.

6.2 Information in the price relative to the average investor’s in-

formation

To operationalize the decomposition of informational sources (14), note that

var [ǫD,t|Jt] = var
[

Dte
∆dt+1|Jt

]

≈
(

Dte
∆̄d
)2

var [∆dt+1|Jt] =
(

Dte
∆̄d
)2

var [νd,t+1] ,

and similarly, and using (28),

var [ǫD,t|∆dt,Jt−1] =
(

Dte
∆̄d
)2
(

var [νd,t+1] + a2pdvar [νpd,t|νd,t]
)

.

Hence
var [ǫD,t|Jt]

var [ǫD,t|Dt,Jt−1]
=

var [νd,t+1]

var [νd,t+1] + a2pdvar [νpd,t|νd,t]
.

Hence, by (31),
var [ǫD,t|Jt]

var [ǫD,t|Dt,Jt−1]
≈ 1− 0.0158 = 0.9842.

In other words, the average investor learns much more from his/her own information than

from the price.

How can the average investor have substantial information, and yet the price have little

information? Loosely speaking, the aggregate discount rate shock dominates price fluctua-

tions, reducing the information content of the price for dividend innovations.
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6.3 The value of private information

The value of the average investor’s information is given by Proposition 2. A key input in

Proposition 2 is T , relating to the precision of the average investor’s signal about dividends.

Proposition 1 does not separably identify T and Υ. However, the value of the average

investor’s information is bounded by the case of the largest possible value of T , coupled with

the lowest possible value of Υ, i.e., T = 0.101 and Υ = 0. Evaluating at these values:

cov
[q0,t
Ā

, Xt+1

]

≈ −
.101

1 − .101

(

1±
0.0119

0.16

10.961

4.5182

)

× P 2
t−1 × 0.01202

=
{

−P 2
t−1 × 1.91× 10−5,−P 2

t−1 × 1.33× 10−5
}

, (45)

and so

V ≈

{

1

1− 1.91×10−5

.07892

,
1

1− 1.33×10−5

.07892

}

= {1.003, 1.002} .

Why is the value of private information so small? While the standard deviation of returns

(expressed as a percentage) is in the 15% range, the standard deviation of expected re-

turns is an order of magnitude lower. In particular, the estimates of Section 5 suggest that

the standard deviation of expected returns is on the order of 1%, stemming overwhelming

stemming from date t discount rate shocks. So if the average investor’s information re-

duces perceived variance by 10%, this corresponds to a reduction of .1 × .012 = 10−5. This

back-of-the-envelope calculation is consistent with the output of the calculation in (45).

6.4 Bounding the ratio of idiosyncratic to aggregate discount rate

shocks

Proposition 1 can also be used to bound the relative importance of idiosyncratic to aggregate

discount rate shocks.

From (44), an uninformed investor’s informational advantage Υ relative to the econo-

metrician is bounded above by 1 − .899 = 0.101. From (6), it follows that the ratio of the

variances of idiosyncratic to aggregate discount rate shocks satisfies

var [ui,t]

var [ǫZ,t]
≥

.899

1− .899

(

1−
var [ǫD,t|Jt]

var [ǫD,t]

)

.

The ratio
var[ǫD,t|Jt]
var[ǫD,t]

is the R2 of ∆dt+1 on the econometrician’s information set. BK report
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a value of 13.9%. Hence, and expressed in more familiar standard deviation terms,

√

var [ui,t]

var [ǫZ,t]
≥ 2.77.

That is, the standard deviation of idiosyncratic discount rate shocks must be at least 2.77

times that of aggregate discount rate shocks. If this were not true, the information that

individual investors would be able to extract from public prices would exceed the total

quantity of their information estimated in (44).

7 Concluding remarks

In this paper I derive a methodology for estimating the quantity and value of the average

investor’s private information. The methodology is based on relatively general assumptions

about asset demand, coupled with a focus on the first two moments of all relevant distribu-

tions. The methodology makes use of market clearing conditions to yield sufficient statistics

formulae for the quantity and value of private information.

I operationalize the methodology using estimates from the price-dividend predictability

literature, specifically, those of Binsbergen and Koijen (2010). Using BK’s estimates suggests

that the average investor possesses substantial private information about future dividends,

but little of this information is impounded into prices, and the value of this information is

relatively small. The combination of these results reflects the large role that discount rate

innovations play in price fluctuations.

BK’s estimates reflect, naturally, a number of specification decisions, including the time

horizon (one year) and the set of public conditioning variables (prices and dividends). The

sufficient statistics formulae hold independently of these estimation choices, though of course

the estimates of the quantity and value of private information are sensitive to these choices.
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A Appendix: Proofs

Proof of Lemma 1: By the standard formula for the conditional variance given joint

normality,

var

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

= var

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

−

(

var [ǫD,t|I0,i,t]

cov [ǫD,t, ǫZ,t|I0,i,t]

)

(

var [ǫD,t|I0,i,t] cov [ǫD,t, ǫZ,t|I0,i,t]
)

var [ǫD,t|I0,i,t] + τ−1
i

(46)

=
τ−1
i

var [ǫD,t|I0,i,t] + τ−1
i

var

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

+
1

var [ǫD,t|I0,i,t] + τ−1
i

(

0 0

0 var [ǫZ,t|I0,i,t] var [ǫD,t|I0,i,t]− cov [ǫD,t, ǫZ,t|I0,i,t]
2

)

=
τ−1
i

var [ǫD,t|I0,i,t] + τ−1
i

var

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

, (47)
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where the final equality follows from (3). In particular, (47) implies

τivar [ǫD,t|Ii,t]

var [ǫD,t|I0,i,t]
=

1

var [ǫD,t|I0,i,t] + τ−1
i

,

and hence

1−τivar [ǫD,t|Ii,t] = 1−
var [ǫD,t|I0,i,t]

var [ǫD,t|I0,i,t] + τ−1
i

=
τ−1
i

var [ǫD,t|I0,i,t] + τ−1
i

=
var [ǫD,t|Ii,t]

var [ǫD,t|I0,i,t]
. (48)

Substituting (48) into (47) yields (4).

Similarly,

var

[(

ǫD,t

ǫZ,t

)

|I0,i,t

]

= var

[(

ǫD,t

ǫZ,t

)

|Jt

]

−

(

cov [ǫD,t, ǫZ,t|Jt]

var [ǫZ,t|Jt]

)

(

cov [ǫD,t, ǫZ,t|Jt] var [ǫZ,t|Jt]
)

var [ǫZ,t|Jt] + var [ui,t]

=
var [ui,t]

var [ǫZ,t|Jt] + var [ui,t]
var

[(

ǫD,t

ǫZ,t

)

|Jt

]

−





var[ǫD,t|Jt]var[ǫZ,t|Jt]−cov[ǫD,t,ǫZ,t|Jt]
2

var[ǫZ,t|Jt]+var[ui,t]
0

0 0



 ,

which by (3) delivers (5) and completes the proof.

Proof of Lemma 2: Let W denote the row vector of variables in Ii,t. Since all random

variables are normally distributed,

∂

∂ǫD,t

E [ǫD,t|Ii,t] = cov [ǫD,t,W ] var [W ]−1

(

∂W

∂ǫD,t

)

⊺

=
1

var [ǫD,t]
cov [ǫD,t,W ] var [W ]−1 cov [ǫD,t,W ]⊺

∂

∂ǫZ,t
E [ǫD,t|Ii,t] = cov [ǫD,t,W ] var [W ]−1

(

∂W

∂ǫZ,t

)

⊺

=
1

var [ǫZ,t]
cov [ǫD,t,W ] var [W ]−1 cov [ǫZ,t,W ]⊺

Moreover,

var

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

= var

[(

ǫD,t

ǫZ,t

)]

−cov

[(

ǫD,t

ǫZ,t

)

,W

]

var [W ]−1 cov

[(

ǫD,t

ǫZ,t

)

,W

]

⊺

,

and so

var [ǫD,t|Ii,t] = var [ǫD,t]− cov [ǫD,t,W ] var [W ]−1 cov [ǫD,t,W ]⊺
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cov [ǫD,t, ǫZ,t|Ii,t] = cov [ǫD,t, ǫZ,t]− cov [ǫD,t,W ] var [W ]−1 cov [ǫZ,t,W ]⊺ .

Hence

∂

∂ǫD,t

E [ǫD,t|Ii,t] =
1

var [ǫD,t]
(var [ǫD,t]− var [ǫD,t|Ii,t])

∂

∂ǫZ,t
E [ǫD,t|Ii,t] =

1

var [ǫZ,t]
(cov [ǫD,t, ǫZ,t]− cov [ǫD,t, ǫZ,t|Ii,t]) ,

and similarly,

∂

∂ǫD,t

E [ǫZ,t|Ii,t] =
1

var [ǫD,t]
(cov [ǫD,t, ǫZ,t]− cov [ǫD,t, ǫZ,t|Ii,t])

∂

∂ǫZ,t
E [ǫZ,t|Ii,t] =

1

var [ǫZ,t]
(var [ǫZ,t]− var [ǫZ,t|Ii,t]) .

Since cov [ǫD,t, ǫZ,t] = 0,

∂

∂ǫD,t

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

1

0

)

= −
1

var [ǫD,t]

(

var [ǫD,t|Ii,t]

cov [ǫD,t, ǫZ,t|Ii,t]

)

(49)

∂

∂ǫZ,t
E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

0

1

)

= −
1

var [ǫZ,t]

(

cov [ǫD,t, ǫZ,t|Ii,t]

var [ǫZ,t|Ii,t]

)

. (50)

By Lemma 1, these expressions rewrite as

∂

∂ǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= −
1

var [ǫD,t]

(

var [ǫD,t|I0,i,t]

cov [ǫD,t, ǫZ,t|I0,i,t]

)

(1− τivar [ǫD,t|Ii,t])

∂

∂ǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

= −
1

var [ǫZ,t]

(

cov [ǫD,t, ǫZ,t|I0,i,t]

var [ǫZ,t|I0,i,t]

)

(1− τivar [ǫD,t|Ii,t]) ,

which in turn imply the first two expressions in Lemma 2.

Similarly, the analogues of (49) and (50) for the information sets I0,i,t and Jt combine

with Lemma 1 to deliver the third and fourth expressions in Lemma 2, completing the proof.

Proof of Lemma 3: By conditional normality,

var [ǫD,t|Jt] = var [ǫD,t]−
c2Dvar [ǫD,t]

2

var [cDǫD,t + cZǫZ,t]
=

c2Zvar [ǫZ,t] var [ǫD,t]

c2Dvar [ǫD,t] + c2Zvar [ǫZ,t]

var [ǫZ,t|Jt] = var [ǫZ,t]−
c2Zvar [ǫZ,t]

2

var [cDǫD,t + cZǫZ,t]
=

c2Dvar [ǫD,t] var [ǫZ,t]

c2Dvar [ǫD,t] + c2Zvar [ǫZ,t]
,
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delivering the result.

Proof of Lemma 4: Using (9) and (10), the market-clearing conditions (7) and (8) rewrite

as

∂Xt+1

∂ǫD,t

−

´

Ai (1− τivar [ǫD,t|Ii,t])
´

Ai

∂

∂ǫD,t

(Xt+1 −E [Xt+1|I0,i,t]) = 0

∂Xt+1

∂ǫZ,t
−

´

Bi
´

Ai

−

´

Ai (1− τivar [ǫD,t|Ii,t])
´

Ai

∂

∂ǫZ,t
(Xt+1 −E [Xt+1|I0,i,t]) = 0.

The result then follows immediately.

Proof of Proposition 2: Substitution of Corollary 1 into the definition (16) of V gives

V =
E [qτ̄ ,t]E [Xt+1]

E [q0,t]E [Xt+1] + cov [q0,t, Xt+1]
.

Substituting in asset demand,

V =
ĀE [Xt+1]

2

ĀE [Xt+1]
2 + cov [q0,t, Xt+1]

=
1

1 +
cov[

q0,t

Ā
,Xt+1]

E[Xt+1]
2

,

establising (17).

From the market-clearing condition (8) ,

ˆ

Ai

∂Xt+1

∂ǫZ,t
−

ˆ

Bi −

ˆ

Ai (1− τivar [ǫD,t|Ii,t])
∂

∂ǫZ,t
(Xt+1 −E [Xt+1|I0,i,t]) = 0.

Dividing by Ā =
´

Aidi and substituting in for T and B̄ yields

∂Xt+1

∂ǫZ,t
−

B̄

Ā
− (1− T )

∂

∂ǫZ,t
(Xt+1 − E [Xt+1|I0,i,t]) = 0,

and hence
1

Ā

∂q0,t
∂ǫZ,t

+ T
∂

∂ǫZ,t
(Xt+1 − E [Xt+1|I0,i,t]) = 0. (51)

Further below, I establish that forecast error sensitivities are related according to

∂
∂ǫZ,t

(Xt − E [Xt|Ii,t])

∂
∂ǫD,t

(Xt −E [Xt|Ii,t])
= −

var [ǫD,t]

var [ǫZ,t]

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

. (52)

Equality (52) follows entirely from updating rules, making use of the fact that all relevant
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date t information sets include the price Pt. Substitution into (51) yields

1

Ā

∂q0,t
∂ǫZ,t

= T
var [ǫD,t]

var [ǫZ,t]

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

∂

∂ǫD,t

(Xt −E [Xt|I0,i,t]) ,

and hence, using (11),

1

Ā

∂q0,t
∂ǫZ,t

= −
var [ǫD,t]

var [ǫZ,t]

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

∂E [Xt|I0,i,t]

∂ǫD,t

.

Also from (11),
1
Ā

∂q0,t
∂ǫD,t

∂Xt+1

∂ǫD,t

= −
T

1− T
.

Substitution of these last two equalities into (18) gives

cov
[q0,t
Ā

, Xt+1

]

= −
T

1− T

(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t]−

∂E[Xt+1|I0,i,t]

∂ǫD,t

∂Xt+1

∂ǫD,t

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

∂Xt+1

∂ǫZ,t

∂Xt+1

∂ǫD,t

(

∂Xt+1

∂ǫD,t

)2

var [ǫD,t] ,

which simplifies to (19).

It remains to establish (52). By the analogue of (3) for the information set Ii,t, expressions

(49) and (50) from the proof of Lemma 2 can be written as

∂

∂ǫD,t

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

1

0

)

= −
1

var [ǫD,t]

(

var [ǫD,t|Ii,t]

cov [ǫD,t, ǫZ,t|Ii,t]

)

∂

∂ǫZ,t
E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

0

1

)

= −
1

var [ǫZ,t]





cov [ǫD,t, ǫZ,t|Ii,t]
cov[ǫD,t,ǫZ,t|Ii,t]

2

var[ǫD,t|Ii,t]



 ,

and hence

∂

∂ǫZ,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

=
var [ǫD,t]

var [ǫZ,t]

cov [ǫD,t, ǫZ,t|Ii,t]

var [ǫD,t|Ii,t]

∂

∂ǫD,t

(

E

[(

ǫD,t

ǫZ,t

)

|Ii,t

]

−

(

ǫD,t

ǫZ,t

))

Moreover, the analogue of (2) for the information set Ii,t implies

cov [ǫD,t, ǫZ,t|Ii,t]

var [ǫD,t|Ii,t]
= −

cD
cZ

= −

∂Pt

∂ǫD,t

∂Pt

∂ǫZ,t

,

delivering (52) and completing the proof.
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B Appendix: Parameter values in (22)-(24)

B.1 From observable moments to parameter values

The parameters to estimate are:
{

∆̄d, p̄d, ρ, φg, φµ, apd, ad, σ
2
pd, σ

2
d, σpd,d

}

.

Of these, p̄d and ∆̄d are estimated using the sample means of pdt and ∆dt, and ρ is in

turn a function of p̄d.

The remaining seven parameters
{

∆̄d, p̄d, ρ, φg, φµ, apd, ad, σ
2
pd, σ

2
d, σpd,d

}

are estimated

from the observed variance and covariance of pdt and ∆dt, including lags.

As preliminaries: Let a0 denote the coefficient on gt in the pdt transition equation,

a0 =
φg − φµ

1− ρφg

.

The following variance and covariances, which are not directly observable, enter many ex-

pressions below:

var [gt] =
var [apdνpd,t + adνd,t]

1− φ2
g

=
a2pdσ

2
pd + a2dσ

2
d + 2apdadσpd,d

1− φ2
g

(53)

cov [gt,∆dt] = φgvar [gt] + cov [apdνpd,t + adνd,t, νd,t] = φgvar [gt] + apdσpd,d + adσ
2
d

cov [gt, pdt] =
a0φgvar [gt] + cov [apdνpd,t + adνd,t, νpd,t]

1− φgφµ

=
a0φgvar [gt] + apdσ

2
pd + adσpd,d

1− φgφµ

.

The observable moments are

var [pdt] =
a20var [gt] + 2a0φµcov [gt, pdt] + σ2

pd

1− φ2
µ

(54)

var [∆dt] = var [gt] + σ2
d (55)

cov [∆dt, pdt] = a0var [gt] + φµcov [gt, pdt] + σpd,d, (56)

and

cov [∆dt+1,∆dt] = cov [gt + νd,t+1,∆dt] = cov [gt,∆dt] (57)

cov [∆dt+1, pdt] = cov [gt + νd,t+1, pdt] = cov [gt, pdt] (58)

cov [pdt+1,∆dt] = cov [a0gt + φµpdt + νpd,t+1,∆dt]

= a0cov [gt,∆dt] + φµcov [pdt,∆dt]

= a0cov [∆dt+1,∆dt] + φµcov [pdt,∆dt]

cov [pdt+1, pdt] = cov [a0gt + φµpdt + νpd,t+1, pdt]
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= a0cov [gt, pdt] + φµvar [pdt]

= a0cov [∆dt+1, pdt] + φµvar [pdt]

and

cov [∆dt+2,∆dt] = φgcov [gt,∆dt] = φgcov [∆dt+1,∆dt]

cov[∆dt+2, pdt] = φgcov [gt, pdt] = φgcov [∆dt+1, pdt]

cov [pdt+2,∆dt] = cov [a0gt+1 + φµpdt+1,∆dt]

= a0φgcov [gt,∆dt] + φµcov [pdt+1,∆dt]

= a0φgcov [∆dt+1,∆dt] + φµcov [pdt+1,∆dt]

cov [pdt+2, pdt] = cov [a0gt+1 + φµpdt+1, pdt]

= a0φgcov [gt, pdt] + φµcov [pdt+1, pdt]

= a0φgcov [∆dt+1, pdt] + φµcov [pdt+1, pdt] .

(One can continue to compute further lag covariance, but doing so does not yield any addi-

tional information.)

The parameter φg is given by

φg =
cov [∆dt+2,∆dt]

cov [∆dt+1,∆dt]
.

Given φg, the parameter φµ can be inferred from the combination of cov [pdt+2, pdt], cov [∆dt+1, pdt]

and cov [pdt+1, pdt].

Given φg and φµ, the remaining non-redundant moment conditions are (54)-(58).

To solve for
{

apd, ad, σ
2
pd, σ

2
d, σpd,d

}

, first substitute (58) into (54) and (56) and rearrange

to yield expressions for σ2
pd, σ

2
d, σpd,d in terms of observable moments and var [gt].

σ2
pd =

(

1− φ2
µ

)

var [pdt]− a20var [gt]− 2a0φµcov [∆dt+1, pdt] (59)

σ2
d = var [∆dt]− var [gt] (60)

σpd,d = cov [∆dt, pdt]− a0var [gt]− φµcov [∆dt+1, pdt] . (61)

Next, substitute in for cov [gt,∆dt] and cov [gt, pdt] in (57) and (58) and rearrange to yield

apdσpd,d + adσ
2
d = cov [∆dt+1,∆dt]− φgvar [gt]

apdσ
2
pd + adσpd,d = (1− φgφµ) cov [∆dt+1, pdt]− a0φgvar [gt] ,
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and hence

(

σ2
pd,d − σ2

pdσ
2
d

)

apd = σpd,d (cov [∆dt+1,∆dt]− φgvar [gt])

− σ2
d ((1− φgφµ) cov [∆dt+1, pdt]− a0φgvar [gt]) (62)

(

σ2
pd,d − σ2

pdσ
2
d

)

ad = σpd,d ((1− φgφµ) cov [∆dt+1, pdt]− a0φgvar [gt])

− σ2
pd (cov [∆dt+1,∆dt]− φgvar [gt]) . (63)

Together, equations (59)-(63) give
{

apd, ad, σ
2
pd, σ

2
d, σpd,d

}

in terms of observable moments

and var [gt]. The term var [gt] itself can be solved for using (53).

B.2 Recovering observable moments from the reported estimates

in BK

BK estimate the system

gt+1 − ∆̄d
BK

= φBK
g

(

gt − ∆̄d
BK
)

+ νBK
g,t+1

∆dt+1 = gt + νBK
d,t+1

pdt+1 − p̄d
BK

=
φBK
g − φBK

µ

1− ρBKφBK
g

(

gt − ∆̄d
BK
)

+ φBK
µ

(

pdt − p̄d
BK
)

−
1

1− ρBKφBK
µ

νBK
µ,t+1 +

1

1− ρBKφBK
g

νBK
g,t+1

under the restriction that cov
[

νBK
g,t+1, ν

BK
d,t+1

]

= 0.

First note that the relation between
{

∆̄d
BK

, p̄d
BK

, ρBK , φBK
g , φBK

µ

}

and observable mo-

ments is exactly the same as the relation between
{

∆̄d, p̄d, ρ, φg, φµ

}

and observable mo-

ments. So is immediate that

{

∆̄d, p̄d, ρ, φg, φµ

}

=
{

∆̄d
BK

, p̄d
BK

, ρBK , φBK
g , φBK

µ

}

. (64)

As such, it is only necessary to recover the five moments that are use to infer
{

apd, ad, σ
2
pd, σ

2
d, σpd,d

}

,

namely var [pdt], var [∆dt], cov [∆dt, pdt], cov [∆dt+1,∆dt] and cov [∆dt+1, pdt]. Explicit eval-

uation implies that these five moments are given by the following expressions (in light of (64),

I drop the BK subscripts on
{

∆̄d, p̄d, ρ, φg, φµ

}

):

var [gt] =

(

σBK
g

)2

1− φ2
g
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cov [gt,∆dt] = φgvar [gt]

cov [gt, pdt] =
a0φgvar [gt]−

σBK
µ,g

1−ρφµ
+

(σBK
g )

2

1−ρφg

1− φgφµ

var [pdt] =
a20var [gt] + 2a0φµcov [gt, pdt]

1− φ2
µ

+

(

1
1−ρφµ

)2
(

σBK
µ

)2
+
(

1
1−ρφg

)2
(

σBK
g

)2
− 2 1

1−ρφµ

1
1−ρφg

σBK
µ,g

1− φ2
µ

var [∆dt] = var [gt] +
(

σBK
d

)2

cov [∆dt, pdt] = a0var [gt] + φµcov [gt, pdt]−
1

1− ρφµ

σBK
µ,d

cov [∆dt+1,∆dt] = cov [gt,∆dt]

cov [∆dt+1, pdt] = cov [gt, pdt] .

C Appendix: Details for calculations in subsections 5.3

to 5.9

C.1 Details for term (25)

The estimated coefficient bpd is

bpd =
∂E
[

ln
(

Pt+1+Dt+1

Pt

)

|Jt

]

∂ lnPt

∂E
[

ln
(

Xt+1+RPt

Pt

)

|Jt

]

∂ lnPt

= Pt

∂E [ln (Xt+1 +RPt) |Jt]

∂Pt

− 1.

For any random variable Y , E [lnY ] ≈ lnE [Y ]− 1
2
var[Y ]

E[Y ]2
.5Hence

bpd ≈ Pt

(

1

E [Xt+1 +RPt|Jt]
+

var [Xt+1 +RPt|Jt]

E [Xt+1 +RPt|Jt]
3

)

∂

∂Pt

E [Xt+1 +RPt|Jt]− 1

5To obtain this approximation: The second-order Taylor expansion is

lnY ≈ lnE [Y ] +
Y − E [Y ]

E [Y ]
−

1

2

(Y − E [Y ])
2

E [Y ]2
.

Hence

E [lnY ] ≈ lnE [Y ]−
1

2

var [Y ]

E [Y ]2
.
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=
1

E
[

Xt+1

Pt
|Jt

]

+R






1 +

var
[

Xt+1

Pt
|Jt

]

(

E
[

Xt+1

Pt
|Jt

]

+R
)2







(

∂

∂Pt

E [Xt+1|Jt] +R

)

− 1,

yielding (25).

C.2 Details for (32)

∂Pt

∂ǫD,t

=
∂Pt

∂Dt+1

∣

∣

∣

∣

∆dt,Jt−1

=
Pt

Dt+1

∂ logPt

∂ logDt+1

∣

∣

∣

∣

∆dt,Jt−1

=
Pt

Dt+1

∂pdt
∂∆dt+1

∣

∣

∣

∣

∆dt,Jt−1

.

To evaluate, replace Pt

Dt+1
with its expected value,

E

[

Pt

Dt+1

]

= E

[

Pt

Dt

Dt+1

Dt

]

≈
E
[

Pt

Dt

]

E
[

Dt+1

Dt

] + cov

[

Pt

Dt

,
1

Dt+1

Dt

]

≈
exp (E [pdt])

exp (∆dt+1)
+ cov [exp (pdt) , exp (−∆dt+1)]

≈
exp

(

p̄d
)

exp (ḡ)
(1− cov [pdt,∆dt+1]) .

C.3 Details for (35)

∂ (Pt+1 +Dt+1)

∂Dt+1

∣

∣

∣

∣

Jt

= 1 +
Pt+1

Dt+1

∂ logPt+1

∂ logDt+1

∣

∣

∣

∣

Jt

= 1 +
Pt+1

Dt+1

∂ log Pt+1

Dt+1

∂ log Dt+1

Dt

+ 1

∣

∣

∣

∣

∣

Jt

= 1 + epdt+1

(

∂pdt+1

∂∆dt+1

∣

∣

∣

∣

Jt

+ 1

)

= 1 + epdt+1

(

cov [νpd,t+1, νd,t+1]

var [νd,t+1]
+ 1

)

≈ 1 + ep̄d
(

cov [νpd,t+1, νd,t+1]

var [νd,t+1]
+ 1

)

.
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C.4 Details for (38)

Evaluating (37):

var

[

∂Pt

∂ǫD,t

ǫD,t

]

= D2
t

(

var
[

epdt |∆dt,Jt−1

]

− var
[

epdt |∆dt+1,∆dt,Jt−1

])

=
(

Pt−1e
∆dt−pdt−1

)2 (
var

[

epdt |∆dt,Jt−1

]

− var
[

epdt |∆dt+1,∆dt,Jt−1

])

≈ P 2
t−1e

¯2∆d−2p̄d
(

ep̄d
)2

(var [pdt|∆dt,Jt−1]− var [pdt|∆dt+1,∆dt,Jt−1])

= P 2
t−1e

2∆̄d (var [νpd,t|νd,t]− var [νpd,t|νd,t, apdνpd,t + adνd,t + νd,t+1]) .

Evaluating,

var [νpd,t|νd,t, apdνpd,t + adνd,t + νd,t+1] = var [νpd,t|νd,t, apdνpd,t + νd,t+1]

= var [νpd,t|νd,t]−
a2pdvar [vpd,t|νd,t]

2

var [νd,t+1] + a2pdvar [vpd,t|νd,t]
,

yielding (38).

C.5 Details for (39)

Expanding

1

Dt

E [Xt+1|Dt+1,Jt]

= E
[

epdt+1+∆dt+1 + e∆dt+1 − Repdt |Dt+1,Jt

]

≈ eE[pdt+1+∆dt+1|∆dt+1,∆dt,Jt−1] (E [pdt+1 +∆dt+1|∆dt+1,Jt]−E [pdt+1 +∆dt+1|∆dt+1,∆dt,Jt−1])

+ eE[∆dt+1|∆dt+1,∆dt,Jt−1] (E [∆dt+1|∆dt+1,Jt]− E [∆dt+1|∆dt+1,∆dt,Jt−1])

− ReE[pdt|∆dt+1,∆dt,Jt−1] (E [pdt|∆dt+1,Jt]−E [pdt|∆dt+1,∆dt,Jt−1])

+ eE[pdt+1+∆dt+1|∆dt+1,∆dt,Jt−1] + eE[∆dt+1|∆dt+1,∆dt,Jt−1] −ReE[pdt|∆dt+1,∆dt,Jt−1]

Note that

E [pdt+1|∆dt+1,Jt]−E [pdt+1|∆dt+1,∆dt,Jt−1]

= E

[

φg − φµ

1− ρφg

gt + φµpdt|∆dt+1,Jt

]

− E

[

φg − φµ

1− ρφg

gt + φµpdt|∆dt+1,∆dt,Jt−1

]

=

(

φg − φµ

1− ρφg

apd + φµ

)

(

νpd
t −E

[

νpd
t |νd

t

])
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and

E [pdt|∆dt+1,Jt]− E [pdt|∆dt+1,∆dt,Jt−1]

= νpd
t − E

[

νpd
t |νd

t

]

.

Hence

1

Dt

E [Xt+1|Dt+1,Jt]

≈

(

eE[pdt+1+∆dt+1|∆dt+1,∆dt,Jt−1]

(

φg − φµ

1− ρφg

apd + φµ

)

−ReE[pdt|∆dt+1,∆dt,Jt−1]

)

(

νpd
t − E

[

νpd
t |νd

t

])

,

and so

(

∂Xt+1

∂ǫZ,t

)2

var [ǫZ,t]

≈
(

Pt−1e
∆dt−pdt−1

)2
(

ep̄d
(

e∆d

(

φg − φµ

1− ρφg

apd + φµ

)

− R

))2

var
[

νpd
t |νd

t

]

≈ P 2
t−1e

2∆̄d

(

e∆̄d

(

φg − φµ

1− ρφg

apd + φµ

)

−R

)2

var
[

νpd
t |νd

t

]

.

C.6 Details for (41)

Using (28) and (29) in the second equality:

(

∂Pt

∂ǫZ,t

)2

var [ǫZ,t] ≈ D2
t e

2p̄d



var [νpd,t|νd,t]−

(

∂pdt
∂∆dt+1

∣

∣

∣

∣

∆dt,Jt−1

)2

var [∆dt+1|∆dt,Jt−1]





= D2
t e

2p̄d

(

var [νpd,t|νd,t]−
a2pdvar [νpd,t|νd,t]

2

var [νd,t+1] + a2pdvar [νpd,t|νd,t]

)

= P 2
t−1e

2∆dt−2pdt−1e2p̄d
var [νpd,t|νd,t] var [νd,t+1]

var [νd,t+1] + a2pdvar [νpd,t|νd,t]

≈ P 2
t−1e

2∆̄d var [νd,t+1] var [νpd,t|νd,t]

var [νd,t+1] + a2pdvar [νpd,t|νd,t]
.

C.7 Details for (42)

E [Xt+1] = E

[

E

[

Dt (e
rt+1 − R)

Pt

Dt

|Jt

]]
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= E
[

E
[

Pt−1e
∆dt−pdt−1 (ert+1 −R) epdt |Jt

]]

≈ Pt−1e
∆̄d (eµ̄ − R) .

D Appendix: Standard present value approximation

rt+1 = log
Pt+1 +Dt+1

Pt

= log
Pt+1 +Dt+1

Dt+1

Dt+1

Dt

Dt

Pt

= log

(

1 + exp

(

log
Pt+1

Dt+1

))

+ log
Dt+1

Dt

− log
Pt

Dt

= log (1 + exp (pdt+1)) + ∆dt+1 − pdt

≈ log
(

1 + exp
(

p̄d
))

+
exp

(

p̄d
)

1 + exp
(

p̄d
)

(

pdt+1 − p̄d
)

+ ∆dt+1 − pdt.

Recalling ρ =
exp(p̄d)

1+exp(p̄d)
and defining Kp̄d = log

(

1 + exp
(

p̄d
))

− ρp̄d

pdt ≈ ρpdt+1 +∆dt+1 − rt+1 +Kp̄d.

Iterating forwards

pdt ≈
∞
∑

s=0

ρs−1 (∆dt+s − rt+s) +
Kp̄d

1− ρ
.

Taking expectations of both sides, the AR1 assumption implies

pdt ≈
gt − ∆̄d

1− ρφg

−
µt − µ̄

1− ρφµ

+
∆̄d− µ̄

1− ρ
+

Kp̄d

1− ρ
,

and hence

pdt − p̄d ≈
gt − ∆̄d

1− ρφg

−
µt − µ̄

1− ρφµ

.
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